James Degnan
University of Canterbury
29 October 2009

(Joint work with Elizabeth Allman and John Rhodes)

ldentifying rooted species trees from
unrooted gene tree probabilities




Outline

1. Background

A. gene trees vs. species trees

B. coalescence and incomplete lineage sorting
2. Rooted gene tree probabilities as polynomials

3. Unrooted gene tree probabilities



Part 1: The multispecies coalescent




Population Genetics and Phylogenetics

Population genetics: traditionally used to
analyze single populations.

Phylogenetics: What is the best way to infer
relationships between populations/species?

Graphic by Mark A. Klinger, Carnegie Museum of Natural History, Pittsburgh
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Model for lineages in populations
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Model species tree with gene tree

A B C D

The gene tree is a random variable. The gene tree distribution is parameterized by
the species tree topology and internal branch lengths.



Part 2: Rooted gene tree

probabilities




How can we compute probabilities of

gene trees given species trees?

-Under a coalescent model, probabilities for gene trees with three
species were derived by Nei (1987): 1-(2/3)e”

-Probabilities for the gene tree to match the species tree topology for
4 and 5 species given by Pamilo and Nei (1988).

-All 30 species tree/gene tree combinations for 4 species given by
Rosenberg (2002).

-General case solved by Degnan and Salter (2005) and implemented by
program COAL. Also allows n, = 0 individuals sampled in species i.



Coalescent histories as cases

Probability that the gene tree matches the species tree for three taxa

Probability: Probability:
PiX<T]= [ ¢ dr=1-¢" (A1/3)Pr{X >T]=(1/3)e”



Coalescent histories as cases

Probability that the gene tree matches the species tree for three taxa

History: (1,2) History: (2,2)

Probability: Probability:
PiX<T]= [ ¢ dr=1-¢" (A1/3)Pr{X >T]=(1/3)e”



Coalescent histories as cases

Probability that the gene tree matches the species tree for three taxa

History: (1,2) History: (2,2)

Total probability:
- +(1/3)e =1-(2/3)e”"



Coalescent histories as cases

Probability that the gene tree matches the species tree for three taxa

History: (1,2)

Total probability:
l-e" +(1/3)e =1-(2/3)e”"

(1,2)

History: (2,2)




Coalescent histories as cases

Probability that the gene tree matches the species tree for three taxa

History: (1,2) History: (2,2)

Total probability:
l-e" +(1/3)e” =1-(2/3)e”"

(1,2) (2,2)



Coalescent history : a list of populations in

which coalescent events occur

Species tree Genetree
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Gene tree probabilities

Pr[G|S]= EPr |G, histories | S]

histories



Gene tree probabilities

PrlG=g|S§]= EPrG g, histories | §]

histories

/ E Hwbpu(b)v(b)(T )

combinatorial enumeration, histories b
complexity only known in special
cases
u coalesce

intov
_ branch length
internal

branches probability coalescences are
of S consistent with g



Gene tree probabilities as linear

combinations

Probabilities of coalescent histories are products of functions pi,j (tb )
9 1 Iff:I = 1 ¢ t

Lyl

praft)=e*

AN 3 ¢ 1 , 3
P3 I\t;l_ 1 5C t 5€
paa(t) = 3¢ jj(: 3t

pas(t) = 2¢ 9 — 2"

pya(t) = e o

paa(f) = 1= 267t e Jo . e
ps.2(t) = 2¢ 30,3t 4 3¢ 5, 10t
ps.a(t) = L3t — 56t 4 15,10t

ps.4(t) = 2¢ 61 5¢ 10¢



Gene tree probabilities as linear

combinations, cont.

Using transformed branch lengths,

X, =e",X,=¢e", elc.

gene tree probabilities can be written as linear combinations
of monomials Xlal X§‘2 ‘o X:"-;

where nis the number of tips, and

n-2

gl

k=2



history hy = (1,2,3)

Probability: p2,1(x)p2,1(y) = (1 - X)(l - Y)



history hy, = (2,3,3)

<
N

A B C D
Probability: 5 P22 (X)P3,(y) = XY - %XY3



Total probability for matching gene

tree, species tree (((a,b):x,c):y,d)

History Probability
hl: (11 213) (1-X)A-Y)
hz: (11313) %(I_X)Y
h3: (2,2,3) %X(l—%Y+%Y3)
h4: (21313) | | 3
h: (3,3,3) e

LXY?
Total

3
1-2X-2Y +1XY +LXY

3



ldentifiability of species trees from

rooted gene trees

Given the set of gene tree probabilities, can the
species tree be recovered?

In many cases, the highest probability gene tree
has the same topology as the species tree, but not
always.

The most likely triple for any set of three taxa is a
rooted triple on the species tree, so the species
tree can be recovered by marginalizing gene trees
to their rooted triples.



Part 3: Unrooted gene trees




Probabilities of unrooted gene trees

The probability of an unrooted gene tree is the
sum of the probabilities of all gene trees with
the same unrooted topology

Prls><5] = P[(((AB)C)D)]
+ P[(((AB)D)C).
+ P[(((CD)A)B);
+ P[(((CD)B)A);
+ P[((AB)(CD)):




Probabilities of unrooted gene trees

Probabilities of unrooted gene trees are linear
combinations of probabilities of rooted gene
trees

In practice, expressions for probabilities of
unrooted gene trees are often simpler than
rooted gene tree probabilities for the same
number of species.



Species tree (((a,b):x,c):y,d)

Unrooted Gene Trees Probability
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Species tree (((a,b):x, (c,d):y)

Unrooted Gene Trees Probability
A c 1-2XY
B D 3
A B
c S + XY
A B



Results for four taxa

If the species tree topology is known, the unrooted gene tree
distribution only has information about one internal edge (or
sum of edges).

If the species tree is unknown, the unrooted gene tree
distribution only identifies the unrooted species tree topology.
The following species trees induce the same unrooted gene
tree distribution:

a,b):z, c)y:,d),

a,b):z. d):ys2,c).

(f
\\
(f
\\
((e,d):z,a):ya, b).
((e,d):z, b)iys. a).
(f
WL

a,b)z, (¢, d):x — z).



What happens with five taxa?

15 unrooted topologies
3 rooted species trees shapes

Caterpilar Balanced Pseudocaterpillar



What happens with five taxa?

* 15 unrooted topologies
* 3rooted species trees shapes

Caterpillar Balanced Pseudocaterpillar

Given a distribution of 15 5-taxon unrooted gene tree probabilities, what information can
we recover about the species tree?

(1) Unrooted species tree topology?

(2) Rooted species tree topology?

(3) Branch lengths?



Species tree (((a,b):x,¢):y,(d,e):z)




Species tree (((a,b):x,¢):y,(d,e):z)




Species tree (((a,b):x,¢):y,(d,e):z)
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Observations

(1) Putting unrooted gene trees that are tied in
probability into equivalence classes, the size of
these classes depends on the unlabeled, rooted
species tree topology on five taxa:

Caterpillar class sizes: 1,1,1,2,2,2,6
Balanced class sizes: 1,2,2,4,6
Pseudocaterpillar sizes: 1,2,2,2,8

(2) The unlabeled, rooted species tree topology can
therefore be determined from the class sizes.



Observations

(3) From the the four-taxon results, the unrooted
species tree topology can be identified by
determining the most probable quartet for each
subset of four species

Therefore we know (for five taxa):
(i) labeled, unrooted species tree topology
(ii) unlabeled, rooted species tree topology



Observations

(4) The labeled, rooted species tree topology can be determined by
further considering invariants or inequalities in unrooted gene
tree probabilities.

A D

Example: Given the unrooted species tree 71

and given that the species tree is balanced, B ¢ E

The rooted species tree is one of:

R, R,

A B CDE A BCDE



Example: Distinguishing two rooted species

trees from unrooted gene tree probabilities

R, and R, imply different invariants and
inequalities for the unrooted gene tree
probabilities.

UnderR,, T, is in the 6-element class, and
Pr(T,) > Pr(T5)

Under R,, T is in the 4-element class, and
Pr(T,) < Pr(T5)



ldentifying labeled, rooted

topologies

Similar arguments can be used to identify the caterpillar
and pseudocaterpillar. Thus five-taxon rooted species
trees are identifiable from five-taxon unrooted gene
tree probabilities.

The results generalize immediately to larger trees:
Given a distribution of unrooted trees on more than five
taxa, the unrooted gene tree distribution for each
subset of five taxa can be obtained by summing over
trees that display the five-taxon tree.

Thus all rooted quintets on the species tree are
identifiable. The rooted species tree topology can be
constructed from the rooted quintets.



Recovering species tree branch

lengths

All branch lengths on five-taxon species trees can be
recovered. Example, (((a,b):x,¢):y,(d,e):z)

u; =1 gX 3}»’2 + lXYZ ; iXY”Z
=273 3 3 T 15
1 1 1 4
Us = Uy = 3Yz 6XYZ mXY Z
1

1 1 .
Uy = U3 = . X ) X}’Z { - XY;Z
3 3 15

1 1 .
Us=Ug=Ug =U2=-XYZ XY*Z
6 10

1 ..
UT =Ug =U) = U] = Uy =U5 = _)&Y"Z
9]
z = —log(X) = —log [Buy + 6uz + 6uy)
log(V) 1 Ic { ;-)ixj- \]
Y OB\ J 2 OF (2 - + 3 )
n { 3us + 3u; + Gur 1 4 YUy
= —log(Z) = —log ( - v ) = 2105: (2 ‘ Z:m‘ }' — log(3us + 3u; + 9



Conclusion

Theorem. (i) The unrooted gene tree distribution
determines the rooted species tree and branch
lengths when there are 5 or more taxa. (ii) The
unrooted gene tree distribution given a four-
taxon species tree determines the unrooted
species tree, but not the rooted species.



Five-taxon Inequalities

Caterpillar. ] > Ug, Uy > Uj s Uz
Uy > Ug, Ug > Uz = UT.
Balanced: ) - ‘.'.: g > = > u.;.

Pseudocaterllar:  w zuuwwo = us



Linear invariants on gene tree

distributions

-- A gene tree distribution has only n-2 parameters (species tree branch lengths)
-- But there are (2n-3)!! gene tree probabilities

-- There are many ties in gene tree probabilities amongst different gene trees

-- There are other linear constraints. For the species tree (((AB)C)D), we have

PrI((AB)(CD))] - Pri(((AB)D)C)] - Prl(((AD)B)C)] = o
U= Uy Uy * Uq Uq9

-- How many linear constraints are there? How does the number of linear constraints
depend on the number of taxa and species tree topology?

-- What are some nonlinear constraints?



Polynomial constraints

Probabilities of coalescent histories, and therefore of gene trees, are
polynomials in the transformed branch lengths. An example polynomial
constraint:

Gpaps + b,ﬂ'i + 3pap1s + 3pspia + 3psprs + 15pspra + Bprsprs + bpf — 2p5 — 2p1s = 0.



Rooted five-taxon gene trees

IR

WON e

- &

o w

B

woN

BTORTET

1

x

SEEREEEREEEEEEEEEEEEE:

B RS

SR

FIIIID

(({({A,B),C).D).E)
((({A,B),C).E),D)
(({((A,B).D),C).E)
((((A,B),D),E),C)
((((A,B).E),C),D)
((((A,B).E),D),C)
((({A,C),B).D).E)
(({(A,C).B).E),D)
((((A,C),D),B).E)
((((A,C),D),E),B)
{{{ ACiE‘BiD‘
(((( A D‘ B\ Cl E\
(A,D),B),E),C)
(A,D),C),B).E)
((((A,D),C),E),B)
(((A.D).E),B),C)
((((A,D).E),C),B)
(A,E),B),C),D)
(A,E),B),D),C)
((((A,E),C),B),D)
((((A,E),C),D),B)
((((A,E),D),B),C)
((((A,E),D),C),B)
((B,C),A),D).E)
((B,C),A).E),D)
((B,C),D),A)E)
"B C),D),E),A)
((B,C),E).A),D)
((B,C),E).D).A)
((B,D),A),C),E)
((((B,D),A),E),C)
((((B,D),C),A).E)
(B,D),C),E),A)
(B,D).E),A),C)

(f
\\
(f
\\
i

(f
\\
(f
\\
i

\
(
\
(
\
f
f
\\
(
\
(
\
(
\
(

(

(

(
(BE‘Ci )
(BE‘(iD‘
(B,E),D), ’\u
(B,E),D),C
(C,D), \‘B‘
(C,D),A),E).B
(C.D),B).A)E
(C,D),B).E),A
(C,D),E),A).B
(C.D),E),B),A
(C.E),A),B),D
(C.E),A),D).B
(C.E),B),A).D
(C.E),B),D),A
(C.E),D),A).B
(C'E‘D‘B‘
(DE) ).B),
(
(
(
(
(

SESKSESESK
EEEEE

-

"CUU’)""CUCU.)

o
P~ S P -

)@D

ﬂmowmﬂwoﬁw

N P . P~ P~ .~ P~ . P~ .~ . . . . P~ . . .
[ T T
P o o

R-)

R
Rh’l?

Rs»

D),(C,E)),B)

(((A,

(((AE),(C,D)),B)
(GBCJDEDA)
(((B,D),(C,E)),A)
((B,E),(C.D)),A)
(((A,B),C),(D,E))
(((A,C),B),(D,E))
(((B,C),A),(D,E))
(((A,B),D),(C,E))
(((A,D).B).,(C,E))
(((B,D),A).(C,E))
(((A,C),D),(B,E))
(((A,D),C),(B,E))
(((C,D),A),(B,E))
(((B,C),D),(AE))
(((B,D),C),(AE))
(((C,D),B),(AE))
(((A,B),E),(C,D))
(((A.E).B).(C.D))
(((B,E),A),(C,D))
(((A,C),E),(B,D))
(((A.E),C),(B,D))
(((C,E),A),(B,D))
(((B,C).E),(A,D))
(((B,E),C),(A.D))
(((C,E),B),(A.D))
(((A,D).E),(B,C))
(((A.E).D),(B,C))
(((D,E),A),(B,C))
(((B,D),E),(A,C))
(((B,E),D),(A,C))
(((D,E),B),(A,C))
(((C,D),E),(A,B))
(((C,E),D),(A,B))
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Unrooted gene trees

Probability

splits

(- ol

%, = P[((A,B).(D.E).C)]
U2 = ?{{*\B)(C'E)D:‘]
ug = P[((A,B),(C,D),E)]
us = P[((A,C),(D,E),B)]
us = P[((A,C),(B.E),D))
us = P[((A,C),(B,D).E)]
ur = ?{{*\D)(CE)B:’]
us = P[((A.D),(B.E).C)]
uo = P[((A,D),(B,C).E)]
u1o = P[((A,E),(C.D).B
un = P[((AE),(B.D),C
u1z = P[((AE),(B,C).D
w13 = B[((B,C),(D,E),A
uy4 = P[((B,D),(C,E),A
w15 = P((B,E),(C,D),A
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