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Motivations

» Phylogenetics: molecular sequences — evolutionary history.

» It is usual to assume that the biological process corresponds
strictly to evolution on a tree.

» This is modelled by taking stochastic independence across
branches of the tree.

» It is well known that biological reality is more complicated.

» ie. Horizontal gene transfer, incomplete lineage sorting,
hybridisation, recombination etc...

» There are various ways this is coped with: split networks via
distances, ie. incompatible distance metrics.

» However it would be nice to generalize probability models
themselves to arbitrary split networks.
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>

Take the state space X ={1,2,...,k}, ie. For DNA k =4
and we write X = {A,C, G, T}.

Consider the probability measures i : X — [0, 1].

> The measures ¢§; defined as §;(j) = d;; form a basis:

=2 jex 1(7)di.

» For a tree with n leaves we need X" := X x X x ... x X.

» Each element (i1, i, ...,in) € X" is a pattern and pj,j,. j, is

an associated probability distribution.

The measures {0, ® §j, ® ... ® Jj, }iin,....inex form a basis for
the measures on X".

We take e; = d;, where the ¢; form a basis for the vector
space V = Ck.

This allows us to speak of a phylogenetic tensor

Pi=3 i b inex Piir..in€iy @ €, @ ... ® e, embedded in ven,
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vV v. v VY

First of all let's deal with branching events (or speciation).
We would like to do this at the level of abstract algebra.
We need an operator 6 : V — V® V.

Imposing conditional independence across branches is enough
to specify § - 6; = ¢; ® e;.

» One taxa goes to two is described by P(1) — §. P(1).
» Two taxa goes to three: P2 — 1@ ¢ - P().

» Meanwhile, the transformation rule under the Markov process

is PO — My - PM) and PR — (M @ M) - PO,

It is that M1 ® M5 occurs as a tensor product which gives
stochastic independence across branches.

Relaxing the condition is central to generalizing to
incompatible split systems.
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The general Markov model and CTMCs

» In our work we like to always think of CTMCs.

» This amounts to taking M = e®t where Q is a zero
column-sum matrix.

» From a Lie group point of view this means the rate
parameters become the coordinates of a “group” manifold.

» je. For k =2, forget t and take M = e? with

_(—a B
o_< X _ﬁ>.
>ConsiderL0¢:<_l1 8>,Lﬁ:<8 _11 >,so

Q = OéLa + ﬂLﬁ.
> These matrices form a “Lie algebra”: [Lo, Lg] = Lg — La.

» This condition is exactly what is needed to ensure that a
continuous-time model is closed (see PJ's talk).
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>

This was discussed in Bashford et. al. (2005) in the context
of Lie algebraic approach and discussed by Bryant (2008).

For binary symmetric case we have Q = —1 4+ K, where K is
the permutation (12).

» The “intertwining property” is - Q =(-1® 1+ K® K) - 0.

» Now, ¢ is a linear operator, so extending to transition matrices

M = e® is easy:
First of all, write e®t = e(-1+K)t — o—teKt \yith

5.eKt — 5. Zoo (Ktl)" _ 000(5(nKt)" o(K@K)t

» Let's work through our simple 2-taxa example.

We can write any phylogenetic tensor as
P=e"exp[Yecr K(e)Te}.

Here we have a “a ha!” moment and replace T with an
arbitrary split system S.
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> Recall that we have Q = oL, + BLg.
» The intertwining is: 0 - Ly = (La ® Lo + Lo ® 1 +1® L,).
» Extend to multifurcating events:
0"Lo = (ZAC[n] azo L L& )> on =Ll om.
» Remember everything is linear, so we can mimic the action
57 - eolatals . with e®£% O gn,
» Working this through, (for a tree at least) it becomes possible
to order by cardinality and write
P=-exp[Ri] -exp[Ra] ... - exp[Rp-1] - 0" -7
where R; = ZA7|A|:,-TAE(A).
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> Take the case where a = 3 =1, ie. =1+ K =L, + Lg.
» But the intertwining is not the same!

—1R1I+KRK # (La®La+La®@1+10L,)+H(Lg® g+ LzR1+1®Lg).
» We are missing the two cross terms L, ® Lg and Lg ® L,.

» The amazing fact is that on a tree this does not make any
difference.

» This is because the cross terms always annihilate any
“mismatched terms”.

» eg. Consider the tree (1(23)) and the relevant operators.

» Clearly, on an arbitrary split system the two approaches are
different...
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» The L-rep has features that the K-rep simply can't match.

» For instance the L-rep seems to have a natural notion of

vV v v Y

bringing edges “back together”.

Consider a simple two-taxa case.

Consider t15(£1?) + L12) + tp3(L3) + L),

This is compared to tio K K® 1+ 31 ® K® K.

OK, great. But the K-rep has desirable mathematical features
the L-rep doesn’t share.

The L-rep mis-behaves (badly!) under marginalizations and is
chronically rooted (for split systems?=contradication).
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Closing remarks

» At this point it seems wise to think more carefully about what
we would like to do with these models.

» Hopefully the actual biological applications will be a useful
guide here.

» Special thanks to David Bryant, John Rhodes and Elizabeth
Allman for additional discussions and comments.

» Thanks for listening!



