
The algebra of Markov models on phylogenetic
split networks

Jeremy Sumner
School of Maths and Physics, University of Tasmania

Joint work with Peter Jarvis and Barbara Holland

Phylomania, 29-30 Oct, 2009

The algebra of Markov models on phylogenetic
split networks

Jeremy Sumner
School of Maths and Physics, University of Tasmania

Joint work with Peter Jarvis and Barbara Holland

Phylomania, 29-30 Oct, 2009

Motivations

Motivations

◮ Phylogenetics: molecular sequences → evolutionary history.

Motivations

◮ Phylogenetics: molecular sequences → evolutionary history.

◮ It is usual to assume that the biological process corresponds
strictly to evolution on a tree.

Motivations

◮ Phylogenetics: molecular sequences → evolutionary history.

◮ It is usual to assume that the biological process corresponds
strictly to evolution on a tree.

◮ This is modelled by taking stochastic independence across
branches of the tree.

Motivations

◮ Phylogenetics: molecular sequences → evolutionary history.

◮ It is usual to assume that the biological process corresponds
strictly to evolution on a tree.

◮ This is modelled by taking stochastic independence across
branches of the tree.

◮ It is well known that biological reality is more complicated.

Motivations

◮ Phylogenetics: molecular sequences → evolutionary history.

◮ It is usual to assume that the biological process corresponds
strictly to evolution on a tree.

◮ This is modelled by taking stochastic independence across
branches of the tree.

◮ It is well known that biological reality is more complicated.

◮ ie. Horizontal gene transfer, incomplete lineage sorting,
hybridisation, recombination etc...

Motivations

◮ Phylogenetics: molecular sequences → evolutionary history.

◮ It is usual to assume that the biological process corresponds
strictly to evolution on a tree.

◮ This is modelled by taking stochastic independence across
branches of the tree.

◮ It is well known that biological reality is more complicated.

◮ ie. Horizontal gene transfer, incomplete lineage sorting,
hybridisation, recombination etc...

◮ There are various ways this is coped with: split networks via
distances, ie. incompatible distance metrics.

Motivations

◮ Phylogenetics: molecular sequences → evolutionary history.

◮ It is usual to assume that the biological process corresponds
strictly to evolution on a tree.

◮ This is modelled by taking stochastic independence across
branches of the tree.

◮ It is well known that biological reality is more complicated.

◮ ie. Horizontal gene transfer, incomplete lineage sorting,
hybridisation, recombination etc...

◮ There are various ways this is coped with: split networks via
distances, ie. incompatible distance metrics.

◮ However it would be nice to generalize probability models
themselves to arbitrary split networks.

Phylogenetic models as tensors

Phylogenetic models as tensors

◮ Take the state space X = {1, 2, . . . , k}, ie. For DNA k = 4
and we write X = {A, C , G , T}.

Phylogenetic models as tensors

◮ Take the state space X = {1, 2, . . . , k}, ie. For DNA k = 4
and we write X = {A, C , G , T}.

◮ Consider the probability measures µ : X → [0, 1].

Phylogenetic models as tensors

◮ Take the state space X = {1, 2, . . . , k}, ie. For DNA k = 4
and we write X = {A, C , G , T}.

◮ Consider the probability measures µ : X → [0, 1].

◮ The measures δi defined as δi (j) = δij form a basis:
µ =

∑
i∈X µ(i)δi .

Phylogenetic models as tensors

◮ Take the state space X = {1, 2, . . . , k}, ie. For DNA k = 4
and we write X = {A, C , G , T}.

◮ Consider the probability measures µ : X → [0, 1].

◮ The measures δi defined as δi (j) = δij form a basis:
µ =

∑
i∈X µ(i)δi .

◮ For a tree with n leaves we need X n := X × X × . . . × X .

Phylogenetic models as tensors

◮ Take the state space X = {1, 2, . . . , k}, ie. For DNA k = 4
and we write X = {A, C , G , T}.

◮ Consider the probability measures µ : X → [0, 1].

◮ The measures δi defined as δi (j) = δij form a basis:
µ =

∑
i∈X µ(i)δi .

◮ For a tree with n leaves we need X n := X × X × . . . × X .

◮ Each element (i1, i2, . . . , in) ∈ X n is a pattern and pi1i2...in is
an associated probability distribution.

Phylogenetic models as tensors

◮ Take the state space X = {1, 2, . . . , k}, ie. For DNA k = 4
and we write X = {A, C , G , T}.

◮ Consider the probability measures µ : X → [0, 1].

◮ The measures δi defined as δi (j) = δij form a basis:
µ =

∑
i∈X µ(i)δi .

◮ For a tree with n leaves we need X n := X × X × . . . × X .

◮ Each element (i1, i2, . . . , in) ∈ X n is a pattern and pi1i2...in is
an associated probability distribution.

◮ The measures {δi1 ⊗ δi2 ⊗ . . . ⊗ δin}i1,i2,...,in∈X form a basis for
the measures on X n.

Phylogenetic models as tensors

◮ Take the state space X = {1, 2, . . . , k}, ie. For DNA k = 4
and we write X = {A, C , G , T}.

◮ Consider the probability measures µ : X → [0, 1].

◮ The measures δi defined as δi (j) = δij form a basis:
µ =

∑
i∈X µ(i)δi .

◮ For a tree with n leaves we need X n := X × X × . . . × X .

◮ Each element (i1, i2, . . . , in) ∈ X n is a pattern and pi1i2...in is
an associated probability distribution.

◮ The measures {δi1 ⊗ δi2 ⊗ . . . ⊗ δin}i1,i2,...,in∈X form a basis for
the measures on X n.

◮ We take ei ≡ δi , where the ei form a basis for the vector
space V ≡ C

k .

Phylogenetic models as tensors

◮ Take the state space X = {1, 2, . . . , k}, ie. For DNA k = 4
and we write X = {A, C , G , T}.

◮ Consider the probability measures µ : X → [0, 1].

◮ The measures δi defined as δi (j) = δij form a basis:
µ =

∑
i∈X µ(i)δi .

◮ For a tree with n leaves we need X n := X × X × . . . × X .

◮ Each element (i1, i2, . . . , in) ∈ X n is a pattern and pi1i2...in is
an associated probability distribution.

◮ The measures {δi1 ⊗ δi2 ⊗ . . . ⊗ δin}i1,i2,...,in∈X form a basis for
the measures on X n.

◮ We take ei ≡ δi , where the ei form a basis for the vector
space V ≡ C

k .

◮ This allows us to speak of a phylogenetic tensor

P :=
∑

i1,i2,...,in∈X pi1i2...inei1 ⊗ ei2 ⊗ . . .⊗ ein embedded in V⊗n.

Branching events

Branching events

◮ First of all let’s deal with branching events (or speciation).

Branching events

◮ First of all let’s deal with branching events (or speciation).

◮ We would like to do this at the level of abstract algebra.

Branching events

◮ First of all let’s deal with branching events (or speciation).

◮ We would like to do this at the level of abstract algebra.

◮ We need an operator δ : V → V ⊗ V .

Branching events

◮ First of all let’s deal with branching events (or speciation).

◮ We would like to do this at the level of abstract algebra.

◮ We need an operator δ : V → V ⊗ V .

◮ Imposing conditional independence across branches is enough
to specify δ · ei = ei ⊗ ei .

Branching events

◮ First of all let’s deal with branching events (or speciation).

◮ We would like to do this at the level of abstract algebra.

◮ We need an operator δ : V → V ⊗ V .

◮ Imposing conditional independence across branches is enough
to specify δ · ei = ei ⊗ ei .

◮ One taxa goes to two is described by P(1) 7→ δ · P(1).

Branching events

◮ First of all let’s deal with branching events (or speciation).

◮ We would like to do this at the level of abstract algebra.

◮ We need an operator δ : V → V ⊗ V .

◮ Imposing conditional independence across branches is enough
to specify δ · ei = ei ⊗ ei .

◮ One taxa goes to two is described by P(1) 7→ δ · P(1).

◮ Two taxa goes to three: P(2) 7→ 1 ⊗ δ · P(2).

Branching events

◮ First of all let’s deal with branching events (or speciation).

◮ We would like to do this at the level of abstract algebra.

◮ We need an operator δ : V → V ⊗ V .

◮ Imposing conditional independence across branches is enough
to specify δ · ei = ei ⊗ ei .

◮ One taxa goes to two is described by P(1) 7→ δ · P(1).

◮ Two taxa goes to three: P(2) 7→ 1 ⊗ δ · P(2).

◮ Meanwhile, the transformation rule under the Markov process
is P(1) → M1 · P

(1) and P(2) → (M1 ⊗ M2) · P
(1).

Branching events

◮ First of all let’s deal with branching events (or speciation).

◮ We would like to do this at the level of abstract algebra.

◮ We need an operator δ : V → V ⊗ V .

◮ Imposing conditional independence across branches is enough
to specify δ · ei = ei ⊗ ei .

◮ One taxa goes to two is described by P(1) 7→ δ · P(1).

◮ Two taxa goes to three: P(2) 7→ 1 ⊗ δ · P(2).

◮ Meanwhile, the transformation rule under the Markov process
is P(1) → M1 · P

(1) and P(2) → (M1 ⊗ M2) · P
(1).

◮ It is that M1 ⊗ M2 occurs as a tensor product which gives
stochastic independence across branches.

Branching events

◮ First of all let’s deal with branching events (or speciation).

◮ We would like to do this at the level of abstract algebra.

◮ We need an operator δ : V → V ⊗ V .

◮ Imposing conditional independence across branches is enough
to specify δ · ei = ei ⊗ ei .

◮ One taxa goes to two is described by P(1) 7→ δ · P(1).

◮ Two taxa goes to three: P(2) 7→ 1 ⊗ δ · P(2).

◮ Meanwhile, the transformation rule under the Markov process
is P(1) → M1 · P

(1) and P(2) → (M1 ⊗ M2) · P
(1).

◮ It is that M1 ⊗ M2 occurs as a tensor product which gives
stochastic independence across branches.

◮ Relaxing the condition is central to generalizing to
incompatible split systems.

The general Markov model and CTMCs

The general Markov model and CTMCs

◮ In our work we like to always think of CTMCs.

The general Markov model and CTMCs

◮ In our work we like to always think of CTMCs.

◮ This amounts to taking M = eQt where Q is a zero
column-sum matrix.

The general Markov model and CTMCs

◮ In our work we like to always think of CTMCs.

◮ This amounts to taking M = eQt where Q is a zero
column-sum matrix.

◮ From a Lie group point of view this means the rate
parameters become the coordinates of a “group” manifold.

The general Markov model and CTMCs

◮ In our work we like to always think of CTMCs.

◮ This amounts to taking M = eQt where Q is a zero
column-sum matrix.

◮ From a Lie group point of view this means the rate
parameters become the coordinates of a “group” manifold.

◮ ie. For k = 2, forget t and take M = eQ with

Q =

(
−α β

α −β

)
.

The general Markov model and CTMCs

◮ In our work we like to always think of CTMCs.

◮ This amounts to taking M = eQt where Q is a zero
column-sum matrix.

◮ From a Lie group point of view this means the rate
parameters become the coordinates of a “group” manifold.

◮ ie. For k = 2, forget t and take M = eQ with

Q =

(
−α β

α −β

)
.

◮ Consider Lα =

(
−1 0
1 0

)
, Lβ =

(
0 1
0 −1

)
, so

Q = αLα + βLβ.

The general Markov model and CTMCs

◮ In our work we like to always think of CTMCs.

◮ This amounts to taking M = eQt where Q is a zero
column-sum matrix.

◮ From a Lie group point of view this means the rate
parameters become the coordinates of a “group” manifold.

◮ ie. For k = 2, forget t and take M = eQ with

Q =

(
−α β

α −β

)
.

◮ Consider Lα =

(
−1 0
1 0

)
, Lβ =

(
0 1
0 −1

)
, so

Q = αLα + βLβ.

◮ These matrices form a “Lie algebra”: [Lα, Lβ] = Lβ − Lα.

The general Markov model and CTMCs

◮ In our work we like to always think of CTMCs.

◮ This amounts to taking M = eQt where Q is a zero
column-sum matrix.

◮ From a Lie group point of view this means the rate
parameters become the coordinates of a “group” manifold.

◮ ie. For k = 2, forget t and take M = eQ with

Q =

(
−α β

α −β

)
.

◮ Consider Lα =

(
−1 0
1 0

)
, Lβ =

(
0 1
0 −1

)
, so

Q = αLα + βLβ.

◮ These matrices form a “Lie algebra”: [Lα, Lβ] = Lβ − Lα.

◮ This condition is exactly what is needed to ensure that a
continuous-time model is closed (see PJ’s talk).

The algebra of branching events

The algebra of branching events

◮ It is clear that we can uniquely define δn to generate
multifurcating events.

The algebra of branching events

◮ It is clear that we can uniquely define δn to generate
multifurcating events.

◮ For instance, consider δ2 := (1 ⊗ δ) · δ = (δ ⊗ 1) · δ.

The algebra of branching events

◮ It is clear that we can uniquely define δn to generate
multifurcating events.

◮ For instance, consider δ2 := (1 ⊗ δ) · δ = (δ ⊗ 1) · δ.

◮ Consider a simple case where we generate the tensor
P = (M1 ⊗ M2) · δ · M0 · π.

The algebra of branching events

◮ It is clear that we can uniquely define δn to generate
multifurcating events.

◮ For instance, consider δ2 := (1 ⊗ δ) · δ = (δ ⊗ 1) · δ.

◮ Consider a simple case where we generate the tensor
P = (M1 ⊗ M2) · δ · M0 · π.

◮ Q. Is it possible to “push through” δ so the branching event
occurs at the root?

The algebra of branching events

◮ It is clear that we can uniquely define δn to generate
multifurcating events.

◮ For instance, consider δ2 := (1 ⊗ δ) · δ = (δ ⊗ 1) · δ.

◮ Consider a simple case where we generate the tensor
P = (M1 ⊗ M2) · δ · M0 · π.

◮ Q. Is it possible to “push through” δ so the branching event
occurs at the root?

◮ A. Yes it is!

The algebra of branching events

◮ It is clear that we can uniquely define δn to generate
multifurcating events.

◮ For instance, consider δ2 := (1 ⊗ δ) · δ = (δ ⊗ 1) · δ.

◮ Consider a simple case where we generate the tensor
P = (M1 ⊗ M2) · δ · M0 · π.

◮ Q. Is it possible to “push through” δ so the branching event
occurs at the root?

◮ A. Yes it is! We can write P = (M1 ⊗ M2) · M̃0 · δ · π in this
case.

The algebra of branching events

◮ It is clear that we can uniquely define δn to generate
multifurcating events.

◮ For instance, consider δ2 := (1 ⊗ δ) · δ = (δ ⊗ 1) · δ.

◮ Consider a simple case where we generate the tensor
P = (M1 ⊗ M2) · δ · M0 · π.

◮ Q. Is it possible to “push through” δ so the branching event
occurs at the root?

◮ A. Yes it is! We can write P = (M1 ⊗ M2) · M̃0 · δ · π in this
case.

◮ The key point is that M̃0 cannot be written as a tensor
product (but it is a well defined linear operator on V ⊗ V).

The algebra of branching events

◮ It is clear that we can uniquely define δn to generate
multifurcating events.

◮ For instance, consider δ2 := (1 ⊗ δ) · δ = (δ ⊗ 1) · δ.

◮ Consider a simple case where we generate the tensor
P = (M1 ⊗ M2) · δ · M0 · π.

◮ Q. Is it possible to “push through” δ so the branching event
occurs at the root?

◮ A. Yes it is! We can write P = (M1 ⊗ M2) · M̃0 · δ · π in this
case.

◮ The key point is that M̃0 cannot be written as a tensor
product (but it is a well defined linear operator on V ⊗ V).

◮ First of all, let’s consider the simpler binary symmetric case...

Intertwinings: binary symmetric case (Z2).

Intertwinings: binary symmetric case (Z2).

◮ This was discussed in Bashford et. al. (2005) in the context
of Lie algebraic approach and discussed by Bryant (2008).

Intertwinings: binary symmetric case (Z2).

◮ This was discussed in Bashford et. al. (2005) in the context
of Lie algebraic approach and discussed by Bryant (2008).

◮ For binary symmetric case we have Q = −1 + K , where K is
the permutation (12).

Intertwinings: binary symmetric case (Z2).

◮ This was discussed in Bashford et. al. (2005) in the context
of Lie algebraic approach and discussed by Bryant (2008).

◮ For binary symmetric case we have Q = −1 + K , where K is
the permutation (12).

◮ The “intertwining property” is δ · Q = (−1 ⊗ 1 + K ⊗ K) · δ.

Intertwinings: binary symmetric case (Z2).

◮ This was discussed in Bashford et. al. (2005) in the context
of Lie algebraic approach and discussed by Bryant (2008).

◮ For binary symmetric case we have Q = −1 + K , where K is
the permutation (12).

◮ The “intertwining property” is δ · Q = (−1 ⊗ 1 + K ⊗ K) · δ.

◮ Now, δ is a linear operator, so extending to transition matrices
M = eQt is easy:

Intertwinings: binary symmetric case (Z2).

◮ This was discussed in Bashford et. al. (2005) in the context
of Lie algebraic approach and discussed by Bryant (2008).

◮ For binary symmetric case we have Q = −1 + K , where K is
the permutation (12).

◮ The “intertwining property” is δ · Q = (−1 ⊗ 1 + K ⊗ K) · δ.

◮ Now, δ is a linear operator, so extending to transition matrices
M = eQt is easy:

◮ First of all, write eQt = e(−1+K)t = e−teKt , with

Intertwinings: binary symmetric case (Z2).

◮ This was discussed in Bashford et. al. (2005) in the context
of Lie algebraic approach and discussed by Bryant (2008).

◮ For binary symmetric case we have Q = −1 + K , where K is
the permutation (12).

◮ The “intertwining property” is δ · Q = (−1 ⊗ 1 + K ⊗ K) · δ.

◮ Now, δ is a linear operator, so extending to transition matrices
M = eQt is easy:

◮ First of all, write eQt = e(−1+K)t = e−teKt , with

δ · eKt = δ ·
∑∞

i=0
(Kt)n

n! =
∑∞

i=0
δ·(Kt)n

n! = e(K⊗K)t .

Intertwinings: binary symmetric case (Z2).

◮ This was discussed in Bashford et. al. (2005) in the context
of Lie algebraic approach and discussed by Bryant (2008).

◮ For binary symmetric case we have Q = −1 + K , where K is
the permutation (12).

◮ The “intertwining property” is δ · Q = (−1 ⊗ 1 + K ⊗ K) · δ.

◮ Now, δ is a linear operator, so extending to transition matrices
M = eQt is easy:

◮ First of all, write eQt = e(−1+K)t = e−teKt , with

δ · eKt = δ ·
∑∞

i=0
(Kt)n

n! =
∑∞

i=0
δ·(Kt)n

n! = e(K⊗K)t .

◮ Let’s work through our simple 2-taxa example.

Intertwinings: binary symmetric case (Z2).

◮ This was discussed in Bashford et. al. (2005) in the context
of Lie algebraic approach and discussed by Bryant (2008).

◮ For binary symmetric case we have Q = −1 + K , where K is
the permutation (12).

◮ The “intertwining property” is δ · Q = (−1 ⊗ 1 + K ⊗ K) · δ.

◮ Now, δ is a linear operator, so extending to transition matrices
M = eQt is easy:

◮ First of all, write eQt = e(−1+K)t = e−teKt , with

δ · eKt = δ ·
∑∞

i=0
(Kt)n

n! =
∑∞

i=0
δ·(Kt)n

n! = e(K⊗K)t .

◮ Let’s work through our simple 2-taxa example.

◮ We can write any phylogenetic tensor as
P = e−λ exp

[∑
e∈T K (e)τe

]
.

Intertwinings: binary symmetric case (Z2).

◮ This was discussed in Bashford et. al. (2005) in the context
of Lie algebraic approach and discussed by Bryant (2008).

◮ For binary symmetric case we have Q = −1 + K , where K is
the permutation (12).

◮ The “intertwining property” is δ · Q = (−1 ⊗ 1 + K ⊗ K) · δ.

◮ Now, δ is a linear operator, so extending to transition matrices
M = eQt is easy:

◮ First of all, write eQt = e(−1+K)t = e−teKt , with

δ · eKt = δ ·
∑∞

i=0
(Kt)n

n! =
∑∞

i=0
δ·(Kt)n

n! = e(K⊗K)t .

◮ Let’s work through our simple 2-taxa example.

◮ We can write any phylogenetic tensor as
P = e−λ exp

[∑
e∈T K (e)τe

]
.

◮ Here we have a “a ha!” moment and replace T with an
arbitrary split system S .

Intertwinings: the general Markov model

Intertwinings: the general Markov model

◮ Recall that we have Q = αLα + βLβ.

Intertwinings: the general Markov model

◮ Recall that we have Q = αLα + βLβ.

◮ The intertwining is: δ · Lα = (Lα ⊗ Lα + Lα ⊗ 1 + 1 ⊗ Lα).

Intertwinings: the general Markov model

◮ Recall that we have Q = αLα + βLβ.

◮ The intertwining is: δ · Lα = (Lα ⊗ Lα + Lα ⊗ 1 + 1 ⊗ Lα).

◮ Extend to multifurcating events:

δnLα =
(∑

A⊂[n],A 6=∅ L
(A)
α

)
· δn := L

[n]
α · δn.

Intertwinings: the general Markov model

◮ Recall that we have Q = αLα + βLβ.

◮ The intertwining is: δ · Lα = (Lα ⊗ Lα + Lα ⊗ 1 + 1 ⊗ Lα).

◮ Extend to multifurcating events:

δnLα =
(∑

A⊂[n],A 6=∅ L
(A)
α

)
· δn := L

[n]
α · δn.

◮ Remember everything is linear, so we can mimic the action

δn · eαLα+αLβ · π with e
αL

[n]
α +βL

[n]
β δn.

Intertwinings: the general Markov model

◮ Recall that we have Q = αLα + βLβ.

◮ The intertwining is: δ · Lα = (Lα ⊗ Lα + Lα ⊗ 1 + 1 ⊗ Lα).

◮ Extend to multifurcating events:

δnLα =
(∑

A⊂[n],A 6=∅ L
(A)
α

)
· δn := L

[n]
α · δn.

◮ Remember everything is linear, so we can mimic the action

δn · eαLα+αLβ · π with e
αL

[n]
α +βL

[n]
β δn.

◮ Working this through, (for a tree at least) it becomes possible
to order by cardinality and write

Intertwinings: the general Markov model

◮ Recall that we have Q = αLα + βLβ.

◮ The intertwining is: δ · Lα = (Lα ⊗ Lα + Lα ⊗ 1 + 1 ⊗ Lα).

◮ Extend to multifurcating events:

δnLα =
(∑

A⊂[n],A 6=∅ L
(A)
α

)
· δn := L

[n]
α · δn.

◮ Remember everything is linear, so we can mimic the action

δn · eαLα+αLβ · π with e
αL

[n]
α +βL

[n]
β δn.

◮ Working this through, (for a tree at least) it becomes possible
to order by cardinality and write

P = exp [R1] · exp [R2] · . . . · exp [Rn−1] · δ
n · π,

where Ri =
∑

A,|A|=i τAL
(A).

These two approaches are different!

These two approaches are different!

◮ Take the case where α = β = 1, ie. −1 + K = Lα + Lβ.

These two approaches are different!

◮ Take the case where α = β = 1, ie. −1 + K = Lα + Lβ.

◮ But the intertwining is not the same!

These two approaches are different!

◮ Take the case where α = β = 1, ie. −1 + K = Lα + Lβ.

◮ But the intertwining is not the same!

−1⊗1+K⊗K 6= (Lα⊗Lα+Lα⊗1+1⊗Lα)+(Lβ⊗Lβ+Lβ⊗1+1⊗Lβ).

These two approaches are different!

◮ Take the case where α = β = 1, ie. −1 + K = Lα + Lβ.

◮ But the intertwining is not the same!

−1⊗1+K⊗K 6= (Lα⊗Lα+Lα⊗1+1⊗Lα)+(Lβ⊗Lβ+Lβ⊗1+1⊗Lβ).

◮ We are missing the two cross terms Lα ⊗ Lβ and Lβ ⊗ Lα.

These two approaches are different!

◮ Take the case where α = β = 1, ie. −1 + K = Lα + Lβ.

◮ But the intertwining is not the same!

−1⊗1+K⊗K 6= (Lα⊗Lα+Lα⊗1+1⊗Lα)+(Lβ⊗Lβ+Lβ⊗1+1⊗Lβ).

◮ We are missing the two cross terms Lα ⊗ Lβ and Lβ ⊗ Lα.

◮ The amazing fact is that on a tree this does not make any
difference.

These two approaches are different!

◮ Take the case where α = β = 1, ie. −1 + K = Lα + Lβ.

◮ But the intertwining is not the same!

−1⊗1+K⊗K 6= (Lα⊗Lα+Lα⊗1+1⊗Lα)+(Lβ⊗Lβ+Lβ⊗1+1⊗Lβ).

◮ We are missing the two cross terms Lα ⊗ Lβ and Lβ ⊗ Lα.

◮ The amazing fact is that on a tree this does not make any
difference.

◮ This is because the cross terms always annihilate any
“mismatched terms”.

These two approaches are different!

◮ Take the case where α = β = 1, ie. −1 + K = Lα + Lβ.

◮ But the intertwining is not the same!

−1⊗1+K⊗K 6= (Lα⊗Lα+Lα⊗1+1⊗Lα)+(Lβ⊗Lβ+Lβ⊗1+1⊗Lβ).

◮ We are missing the two cross terms Lα ⊗ Lβ and Lβ ⊗ Lα.

◮ The amazing fact is that on a tree this does not make any
difference.

◮ This is because the cross terms always annihilate any
“mismatched terms”.

◮ eg. Consider the tree (1(23)) and the relevant operators.

These two approaches are different!

◮ Take the case where α = β = 1, ie. −1 + K = Lα + Lβ.

◮ But the intertwining is not the same!

−1⊗1+K⊗K 6= (Lα⊗Lα+Lα⊗1+1⊗Lα)+(Lβ⊗Lβ+Lβ⊗1+1⊗Lβ).

◮ We are missing the two cross terms Lα ⊗ Lβ and Lβ ⊗ Lα.

◮ The amazing fact is that on a tree this does not make any
difference.

◮ This is because the cross terms always annihilate any
“mismatched terms”.

◮ eg. Consider the tree (1(23)) and the relevant operators.

◮ Clearly, on an arbitrary split system the two approaches are
different...

The L-rep vs. the K -rep

The L-rep vs. the K -rep

◮ The L-rep has features that the K -rep simply can’t match.

The L-rep vs. the K -rep

◮ The L-rep has features that the K -rep simply can’t match.

◮ For instance the L-rep seems to have a natural notion of
bringing edges “back together”.

The L-rep vs. the K -rep

◮ The L-rep has features that the K -rep simply can’t match.

◮ For instance the L-rep seems to have a natural notion of
bringing edges “back together”.

◮ Consider a simple two-taxa case.

The L-rep vs. the K -rep

◮ The L-rep has features that the K -rep simply can’t match.

◮ For instance the L-rep seems to have a natural notion of
bringing edges “back together”.

◮ Consider a simple two-taxa case.

◮ Consider t12(L
(12) + L12

β) + t23(L
(23) + L23

β).

The L-rep vs. the K -rep

◮ The L-rep has features that the K -rep simply can’t match.

◮ For instance the L-rep seems to have a natural notion of
bringing edges “back together”.

◮ Consider a simple two-taxa case.

◮ Consider t12(L
(12) + L12

β) + t23(L
(23) + L23

β).

◮ This is compared to t12K ⊗ K ⊗ 1 + t231 ⊗ K ⊗ K .

The L-rep vs. the K -rep

◮ The L-rep has features that the K -rep simply can’t match.

◮ For instance the L-rep seems to have a natural notion of
bringing edges “back together”.

◮ Consider a simple two-taxa case.

◮ Consider t12(L
(12) + L12

β) + t23(L
(23) + L23

β).

◮ This is compared to t12K ⊗ K ⊗ 1 + t231 ⊗ K ⊗ K .

◮ OK, great. But the K -rep has desirable mathematical features
the L-rep doesn’t share.

The L-rep vs. the K -rep

◮ The L-rep has features that the K -rep simply can’t match.

◮ For instance the L-rep seems to have a natural notion of
bringing edges “back together”.

◮ Consider a simple two-taxa case.

◮ Consider t12(L
(12) + L12

β) + t23(L
(23) + L23

β).

◮ This is compared to t12K ⊗ K ⊗ 1 + t231 ⊗ K ⊗ K .

◮ OK, great. But the K -rep has desirable mathematical features
the L-rep doesn’t share.

◮ The L-rep mis-behaves (badly!) under marginalizations and is
chronically rooted (for split systems?=contradication).

Closing remarks

◮ At this point it seems wise to think more carefully about what
we would like to do with these models.

Closing remarks

◮ At this point it seems wise to think more carefully about what
we would like to do with these models.

◮ Hopefully the actual biological applications will be a useful
guide here.

Closing remarks

◮ At this point it seems wise to think more carefully about what
we would like to do with these models.

◮ Hopefully the actual biological applications will be a useful
guide here.

◮ Special thanks to David Bryant, John Rhodes and Elizabeth
Allman for additional discussions and comments.

Closing remarks

◮ At this point it seems wise to think more carefully about what
we would like to do with these models.

◮ Hopefully the actual biological applications will be a useful
guide here.

◮ Special thanks to David Bryant, John Rhodes and Elizabeth
Allman for additional discussions and comments.

◮ Thanks for listening!

