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I: Filtered models:

• Variants of standard Markov substitution models on trees where

only non-constant, or only parsimony-informative patterns are

observed

• Designed for phenotypic datasets — acquisition bias prevents

appropriate sampling of non-informative character patterns

Is a character recorded if all taxa show the same state?

Is it recorded if only a single taxon shows a different state? if all

taxa show unique states?
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• Despite shortcomings of simple models for phenotypic datasets,

statistical approaches such as ML, Bayesian inference might still be

preferable to parsimony

• Model proposed by P. Lewis (2001) is “JC-like” but omits constant

patterns

• Model of Ronquest–Hulsensebeck (2004?) is similar but omits

parsimony-noninformative patterns;

used for combined analysis of sequence and morphological data by

Nylander–Ronquest–Hulsenbeck–Nieves-Aldrey (2004)

• Growing use in literature for inference of trees and/or rates of

gain/loss (e.g., intron gain/loss Csűrös et al., 2007)
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For this talk, focus on

GM2pars-inf: 2-state General Markov model, with only

parsimony-informative characters observed

Parameters: Tree, 2 × 2 Markov matrix on each edge,

arbitrary root distribution

CFNpars-inf: Cavender-Farris-Neyman model, with only

parsimony-informative characters observed

Submodel of GM2pars-inf with symmetric Markov matrics,

uniform root distribution

But results generalize to k-state models
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II: Identifiability:

For a fixed model,

Given an exact distribution of site-patterns arising from the model

— infinite amounts of ‘perfect’ data —

can we determine all model parameters?

Identifiability is necessary for statistical consistency of inference

( Efficiency = good performance with finite amounts of data,

Robustness = good performance when model is wrong)

Morphological Models —Phylomania 2009 Slide 6



Tree identifiability: Failure

• Inference by parsimony for the CFN model (hence CFNpars-inf) on

4-taxa can be ‘positively misleading’ (Felsenstein 1978)

(This is not an identifiability statement)

• There are instances of non-identifiability of 4-taxon trees from only

parsimony-informative CFN (Steel-Hendy-Penney 1993)

In fact, things are worse...
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Theorem (AHR): Any strictly-positive distribution of

parsimony-informative patterns on 4 taxa can arise on any of the three

resolved tree topologies under a CFNpars-inf, GM2pars-inf, or k-state

generalizations.

Identifiability of 4-taxon topologies fails completely.

ML, properly implemented, should return all tree topologies as equally

likely.
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Aside:

For basic examples often given to motivate phylogenetic methods to

students, consistent inference of a single tree is impossible by any

method!

S1 : ACTTA . . .

S2 : ACGGG . . .

S3 : GTTGG . . .

S4 : GTGGA . . .
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Sketch of proof:

For T = ab|cd, let pxxyy(s), pxyxy(s), pxyyx(s) be the expected

frequencies of the 3 types of patterns. Represent the triple by points in

the 2-d probability simplex

Then give an explicit loop in parameters space S, which is mapped to

the colored curves under the parameterization. (If certain edges have

length 0, parameters map to corners; then find parameters that map to

near the boundary.)
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Since parameter space S = R
5 is contractible, the image of the

parameterization must include interior of curve (formal proof uses

fundamental group, basic algebraic topology).

Loop depends on an ε > 0, and as ε → 0, curves tend to boundary.

Thus full interior of simplex is in image of parameterization, for T , and

hence other trees as well.
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But 4-taxon case is pathological...

For n taxa, there are exponentially many patterns, 2n,

only linearly many of these are parsimony non-informative, 2n,

so parsimony-informative data should retain most phylogenetic signal.
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Tree identifiability:

Theorem (AHR): Suppose all Markov matrix parameters are

non-singular and have all positive entries. Then topologies of n-taxon

trees are identifiable for GM2pars-inf (and hence CFNpars-inf) for n ≥ 8.

Proof:

• Enough to identify all 4-taxon subtrees.

• For subtree relating taxa a1, a2, a3, a4, fix some choice of

parsimony-informative pattern at all other taxa

• Consider only patterns extending this choice to a1, . . . , a4.

• Observed frequencies of these extended patterns satisfy certain

algebraic relationships (phylogenetic invariants) that depend on the

4-taxon topology.

(Invariants are inspired by the 4-point condition using a log-det

distance – Cavender-Felsenstein, Steel)
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Note: Identifiability of topologies for 5-, 6-, 7-taxon trees unknown.
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Numerical parameter identifiability:

Suppose

• the tree topology is known,

• all Markov matrix parameters are non-singular, and

• some parsimony-informative pattern has positive probability of

being observed

Theorem (AHR): For an n-taxon tree with n ≥ 7, all numerical

parameters of GM2pars-inf are identifiable, up to ‘label-swapping’ at

internal nodes. Hence numerical parameters of CFNpars-inf are

identifiable.
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Theorem (AHR): For a 5-taxon tree generic numerical parameters of

GM2pars-inf are identifiable, up to ‘label-swapping’ at internal nodes.

However, there exists a subset of codimension 1 in the parameter

space for which identifiability may fail.

Within this subset of potentially non-identifiable parameters, there is a

smaller subset of codimension 2 in the full parameter space for which

identifiability definitely fails.
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Cartoon of parameter space for 5-taxon trees:
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Specializing to CFNpars-inf, generic parameters are identifiable.

However, the potentially non-identifiable parameters for 5-taxon trees

include those from ultrametric (molecular clock) trees!
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Sketch of method of proof of identifiabilty of numerical parameters:

We use

Theorem (AR, 2008): For the 2-state General Markov model on a

5-taxon binary tree as shown, let {0, 1} denote the set of character

states. Let pi1i2i3i4i5 denote the joint probability of observing state ij

in the sequence at leaf aj , j = 1, . . . , 5.

a1

a2

a5

a3

a4

Then the ideal of phylogenetic invariants for this model are generated
by the 3 × 3 minors of the following two matrices:

0
BBBBB@

p00000 p00001 p00010 p00011 p00100 p00101 p00110 p00111
p01000 p01001 p01010 p01011 p01100 p01101 p01110 p01111
p10000 p10001 p10010 p10011 p10100 p10101 p10110 p10111
p11000 p11001 p11010 p11011 p11100 p11101 p11110 p11111

1
CCCCCA
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and
0
BBBBBBBBBBBBBBB@

p00000 p00001 p00010 p00011
p00100 p00101 p00110 p00111
p01000 p01001 p01010 p01011
p01100 p01101 p01110 p01111
p10000 p10001 p10010 p10011
p10100 p10101 p10110 p10111
p11000 p11001 p11010 p11011
p11100 p11101 p11110 p11111

1
CCCCCCCCCCCCCCCA

.
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If we have only probabilities q of patterns conditioned on

parsimony-informativeness, then we know only some of these entries,

but rescaled by an unknown factor.

0
BBBBB@

q00000 q00001 q00010 q00011 q00100 q00101 q00110 q00111

q01000 q01001 q01010 q01011 q01100 q01101 q01110 q01111

q10000 q10001 q10010 q10011 q10100 q10101 q10110 q10111

q11000 q11001 q11010 q11011 q11100 q11101 q11110 q11111

1
CCCCCA

Red entries are unknown; 3 × 3 minors must still be zero.
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Judicious choices of 3 × 3 minors allows for determination of unknown

entries, provided certain 2 × 2 minors don’t vanish. E.g.,
˛̨
˛̨
˛̨
˛̨

q01001 q01010 q01011

q10001 q10010 q10011

q11001 q11010 q11011

˛̨
˛̨
˛̨
˛̨
= 0,

Expanding the determinant in cofactors by the last column we have

q01011

˛̨
˛̨
˛̨
q10001 q10010

q11001 q11010

˛̨
˛̨
˛̨−q10011

˛̨
˛̨
˛̨
q01001 q01010

q11001 q11010

˛̨
˛̨
˛̨+q11011

˛̨
˛̨
˛̨
q01001 q01010

q10001 q10010

˛̨
˛̨
˛̨ = 0

Thus provided ˛̨
˛̨
˛̨
q01001 q01010

q10001 q10010

˛̨
˛̨
˛̨ �= 0

we can determine q11011 from other qi where i ∈ S.

Morphological Models —Phylomania 2009 Slide 22



For 5-taxon trees, enough 2 × 2 minors may be zero to defeat this

approach, but still gives understanding of potential non-identifiability.

For trees with at least 7 taxa, enough 2 × 2 minors must be non-zero

to determine all unknown entries.

Determining scaling factor is easy – sum of pi is 1.
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